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A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia
families. After all quality control checks, the analysis of 707 European-ancestry families included
1615 affected and 1602 unaffected genotyped individuals, and the analysis of all 807 families
included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction
for marker–marker linkage disequilibrium was carried out with 5861 single nucleotide poly-
morphisms (SNPs; Illumina version 4.0 linkage map). Suggestive evidence for linkage (European
families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in nonparametric and/or
parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite
heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12.
Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across
family sets and analyses was most consistent on chromosome 8p21, with a one-LOD support
interval that does not include the candidate gene NRG1, suggesting that one or more other
susceptibility loci might exist in the region. In this era of genomewide association and deep
resequencing studies, consensus linkage regions deserve continued attention, given that linkage
signals can be produced by many types of genomic variation, including any combination of multiple
common or rare SNPs or copy number variants in a region.
Molecular Psychiatry (2009) 14, 786–795; doi:10.1038/mp.2009.11; published online 17 February 2009

Keywords: genome; human; genotype; humans; schizophrenia/*genetics; genetic predisposition
to disease; *linkage (genetics)

Introduction

Two major methods are currently available to scan
the genome to detect disease susceptibility loci:
genomewide linkage studies (GWLS) and genome-
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wide association studies (GWAS). We report here on a
GWLS of eight samples of families with multiple
cases of schizophrenia (SCZ) using a dense map of
single nucleotide polymorphism (SNP) markers,
and the companion paper1 reports on a meta-analysis
of 32 SCZ GWLS including the eight samples
studied here.

GWLS use hundreds or thousands of DNA markers
to detect the broad regions (millions of base pairs)
within which there are most likely to be disease
susceptibility loci, based on the pattern of within-
family correlations between marker alleles and
disease. GWAS use hundreds of thousands of SNPs
that tag (serve as proxies for) most of the common
SNPs in the genome, to identify small regions (tens of
thousands of base pairs) likely to harbor susceptibility
variants. GWAS can detect loci with much weaker
genetic effects if they are due to common SNPs. For
common, genetically complex disorders, GWAS have
proven more successful than GWLS in producing
robust and well-replicated associations.2 However,
there are genetic effects for which GWLS can be more
powerful, including loci with multiple rare patho-
genic mutations in different families, or several
different susceptibility loci in the same region.

The present study is a collaboration of seven
research groups using pedigree samples collected by
each group3–11 plus a publicly available sample,12

totaling over 800 pedigrees with ill individuals in
constellations that are informative for linkage analy-
sis. We previously carried out a set of studies of
candidate linkage regions.13–16 We now report on a
new genomewide linkage scan of the entire sample.
Whereas previously around 70% of these families had
been included in published linkage scans using
microsatellite markers,3,5,6,10,11,17–19 we have now
scanned all available families using a set of almost
6000 SNP markers genotyped with high accuracy,
extracting on average around 90% of the possible
linkage information from these pedigrees. In analyses
of 707 European-ancestry pedigrees, significant link-
age accounting for cross-site heterogeneity was ob-
served on chromosome 10p, and suggestive evidence
for linkage on chromosomes 8p, 8q and 12q, as well
9q when non-European families were included.

Materials and Methods

Subjects

The sample is described in Tables 1 and 2. Recruit-
ment by each research group has been previously
described.3–12 Here, affected cases included probands
with Diagnostic and Statistical Manual of Mental
Disorders, third edition, revised diagnoses of SCZ and
relatives with SCZ or schizoaffective disorder, which
co-segregates with SCZ in families20 and is often
not differentiated reliably from SCZ.21 Consensus
diagnoses were based on information from semi-
structured interviews, psychiatric records and family
informants.

Genotyping
Genotyping was carried out at the Center for Inherited
Disease Research (CIDR) using the Illumina Gold-
enGate assay22 to analyze the Illumina version 4.0
linkage marker set of 6008 SNPs. SNPs were excluded
by CIDR (N = 53) based on internal quality control
(QC) criteria, and by the investigators (N = 36) for
more than three parent–child inheritance errors or
deviation from Hardy–Weinberg equilibrium at
P < 0.001, leaving 5861 autosomal or X chromosome
SNPs for analyses. deCODE23 map locations were
provided by Illumina. There were 0.09% missing
genotypes, 0.12% Mendelian inconsistencies before
QC checks (0.00138% in the analyzed SNPs) and
0.002% discordant genotypes in 224 blind duplicate
specimens. There were 132 DNAs excluded for poor
performance in genotyping of a preliminary forensic
panel or the full SNP panel; and 60 for inconsistency
with reported sex, Mendelian inconsistencies greater
than 0.5% or sample call rates less than 98%.

Pedigree relationship analyses
Pairwise identity-by-descent (IBD) proportions were
analyzed for all pairs of subjects using PLINK,24 and
differences between specified and actual relation-
ships within families were analyzed using PREST.25

As a result, 50 DNAs were excluded to resolve pairs of
identical specimens, three families were excluded
because genotypic relationships did not fit the family
and eight because the same family was found in two
different samples (JHU-NIMH, JHU-ENH, ENH-NIMH
or Cardiff-VCU). Pedigree structures were also cor-
rected (for example, half-sib vs full-sib relationships)
as required.

Because of the high accuracy of genotyping with a
dense SNP map that facilitated analysis of relation-
ships, and the enlarged samples, the present data
replace previous analyses of candidate regions by this
collaboration for this narrow phenotypic model.13–16

Assignment of families to ancestry subsamples
Families were assigned to predominantly European
(EUR), African-American or African-European (AFR)
or ‘other’ (OTH) groups based on STRUCTURE26

analysis of 49 independent autosomal SNPs that had
large allele frequency differences between ancestries
(0.5–0.69 EUR vs AFR, 0.3–0.47 for EUR vs OTH) in
this sample based on investigator-reported ancestries,
or based on public databases. EUR or AFR families
had an estimated 70% or more ancestry from that
group, otherwise the family was considered OTH.
Members of these groups had a mean 98 or 96%
ancestry, from that group. Analyses were carried out
for EUR families and then for ALL families (using
allele frequencies estimated separately for EUR, AFR
and OTH groups27).

Statistical analyses
The planned primary multipoint linkage analysis of
EUR families used the SPAIRS statistic (ZLikelihoodRatio

and its Kong–Cox equivalent LOD score28 under the
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exponential model) computed with MERLIN29 using
MERLIN’s correction for linkage disequilibrium (LD)
within clusters of markers based on a threshold of r2

greater than 0.05 for consecutive pairs of markers.30

Before analyses, unlikely genotypes were detected
and excluded using MERLIN.31

Additional analyses included: (1) SPAIRS analysis of
ALL families using ALLEGRO 2.032 (analyzing each
ancestry subset with it own allele frequencies) with a
‘no-LD map’ of 4365 autosomal and X chromosome
SNPs with no marker–marker r2 greater than 0.05
(because ALLEGRO cannot correct for LD); (2) the
Kong–Cox exponential SALL statistic that gives more
weight to larger families (results were similar and are
not shown here, but are included in online Supple-
mentary Files); (3) parametric heterogeneity LOD
score (hLOD) analysis under dominant (risk allele
frequency = 0.05; penetrances = 0, 0.001 and 0.001)
and recessive (risk allele frequency = 0.1, pene-
trances = 0, 0 and 0.001) models, using MERLIN for
EUR and ALLEGRO (and the no-LD map) for ALL
families; (4) logistic regression analysis of IBD
sharing33,34 to assess heterogeneity across sites,
linkage while accounting for heterogeneity, effects of
parent-of-origin of each allele and of sex of the
affected pair (M-M, M-F, F-F), and interactions
between linkage regions (see online Supplementary
Table 5 for description).

Thresholds for significant (0.05 or fewer peaks
expected genomewide per genome scan) and sugges-
tive (less than 1 peak per scan) evidence for linkage
were determined by simulation for nonparametric
and parametric analyses using data generated under
the assumption of no linkage. ‘Peaks’ were defined as
local maxima at least 30 cM from another peak. The
empirical threshold for parametric analysis was
corrected for two tests by taking the maximum result
of the dominant and recessive analyses of simulated
replicates at each point.

Data sharing
All genotypic data for this study will be made
available to qualified scientists by the NIMH Center
for Genetic Studies (nimhgenetics.org).

Results

Nonparametric and parametric linkage analyses
The empirical LOD or hLOD thresholds for suggestive
linkage were 1.94 for nonparametric and 2.21 for
parametric tests, or 3.26 and 3.66 for significant
linkage. Mean information content was 0.88 (s.d.
0.026) using MERLIN’s entropy measure (reflecting
potential information with fully informative markers)
and 0.908 (s.d. 0.028) using ALLEGRO’s exponential
measure (measuring potential information given the
constellation of genotyped relatives).

Figure 1 shows Kong–Cox LODs and dominant and
recessive hLOD scores for EUR and ALL families.
Table 2 lists the maximum LOD and hLOD scores in
each analysis on each chromosome. The nonpara-
metric analysis of EUR families, considered the
primary analysis here, produced suggestive evidence
for linkage on chromosome 8p21 (in EUR families,
LOD = 2.00, 45.9 cM; in ALL families, LOD = 2.51,
46.4 cM, with the latter, larger score at 26.61 Mb).
The dominant and recessive analyses were consid-
ered an alternative approach, and suggestive evidence
for linkage (taking both tests into account as noted
above) was observed on chromosomes 8p21, 8q24.1,
9q34 and 12q24.1 in nonparametric and/or parametric
analyses (see Table 1 for details). Evidence for linkage
was most consistent for chromosome 8p21 (five of the
six analyses).

Heterogeneity and linkage allowing for heterogeneity
Table 3 shows the results of the logistic regression
analysis of linkage while allowing for intersite
heterogeneity, in EUR families. Highly significant

Table 1 Clinical sample

Site European ancestry African ancestry Other ancestry All families

Fam Aff UA All Fam Aff UA All Fam Aff UA All Fam Aff UA All

Australia–USA 49 114 126 240 8 24 12 36 2 5 10 15 59 143 148 291
Bonn/Perth 96 212 189 401 0 0 0 0 0 0 0 0 96 212 189 401
Cardiff 113 239 88 327 0 0 0 0 0 0 0 0 113 239 88 327
ENH/Northwestern 51 121 115 236 2 4 4 8 0 0 0 0 53 125 119 244
Paris/CNRS 29 75 68 143 8 25 29 54 26 86 91 177 63 186 188 374
Johns Hopkins 124 295 429 724 8 20 21 41 1 2 2 4 133 317 452 769
NIMH-SGI 61 142 120 262 39 107 62 169 6 12 6 18 106 261 188 449
VCU/Irish 184 417 467 884 0 0 0 0 0 0 0 0 184 417 467 884
Total 707 1615 1602 3217 65 180 128 308 35 105 109 214 807 1900 1839 3739

Sample sizes are shown for European ancestry (abbreviated as EUR in the text), African-American or African-European (AFR)
and Other ancestry (OTH) pedigrees included in the combined analysis (ALL families). Shown are the numbers of families,
genotyped affected and unaffected individuals in these families, and total numbers of DNA specimens.
Approximately 70% of these subjects and pedigrees had been included in previous published genome scan analysis (see
text), using less informative marker sets.
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Table 2 Maximum nonparametric and parametric LOD scores on each chromosome in European-ancestry and ALL families

European-ancestry families ALL families

Chr Kong–Cox (nonpar) Dominant Recessive Kong–Cox (nonpar) Dominant Recessive

cM LOD SNP cM hLOD SNP cM hLOD SNP cM LOD SNP cM hLOD SNP cM hLOD SNP

1 124.1 1.24 rs1517432 254.7 1.13 rs528011 124.1 0.91 rs1517432 122.4 0.91 rs508020 254.7 0.77 rs528011 47.1 0.83 rs8559
2 206.6 1.88 rs1396828 206.6 1.48 rs1396828 233.3 1.75 rs1435850 118.1 1.52 rs1026220 118.1 1.13 rs1026220 182.1 1.81 rs920557
3 64.6 0.37 rs1405796 18.3 0.42 rs1504034 9.2 0.13 rs2290610 64.6 0.33 rs1405793 28.3 0.47 rs749477 9.3 0.23 rs1153459
4 56.3 0.84 rs12142 66.1 0.67 rs1866989 180.6 1.12 rs724659 202.6 0.68 rs996026 65.1 0.71 rs969992 181.8 1.09 rs335077
5 166.2 0.96 rs1299048 161.5 1.69 rs728693 168.8 0.93 rs878953 161.9 1.15 rs949602 161.0 2.03 rs1432812 164.4 1.13 rs9216
6 33.0 0.67 rs1891284 21.7 0.47 rs767022 167.4 0.76 rs1866896 77.9 0.73 rs1409104 77.9 0.66 rs1409104 100.7 1.07 rs1488318
7 12.9 0.26 rs758263 8.7 0.33 rs1470539 78.8 0.61 rs517258 12.3 0.32 rs558030 8.6 0.36 rs1470539 78.4 0.46 rs2009526
8 45.9 2.00 rs1561817 46.3 2.65 rs1561817 133.9 2.37 rs901592 46.4 2.51 rs9797 46.8 2.76 rs9797 133.9 1.98 rs901592
9 146.5 1.69 rs886017 146.8 1.85 rs12335 143.3 1.81 rs10901140 146.5 1.91 rs886017 146.5 2.75 rs886017 145.6 1.77 rs456396

10 169.3 0.85 rs1536087 43.9 1.61 rs1339048 68.6 1.85 rs1822861 52.9 0.74 rs332188 42.8 1.26 rs729245 68.0 1.41 rs1822861
11 126.4 0.17 rs668183 90.0 0.13 rs1278402 124.9 0.16 rs596437 126.1 0.14 rs668183 90.0 0.20 rs948142 124.5 0.33 rs665035
12 126.7 1.39 rs233722 126.7 2.25 rs233722 130.0 1.14 rs1920586 119.0 1.55 rs1862032 126.2 1.87 rs737280 130.4 1.17 rs1920568
13 58.1 0.53 rs301653 12.5 0.85 rs6490970 127.8 0.78 rs755992 122.0 0.36 rs1894758 51.2 0.60 rs1853987 127.8 0.51 rs912007
14 14.8 0.52 rs4982599 14.8 0.63 rs4982599 58.0 1.06 rs999881 72.1 0.82 rs7155380 14.8 0.58 rs4982599 57.5 1.62 rs999881
15 58.6 1.39 rs383902 68.3 1.21 rs2439378 68.7 0.86 rs745103 68.3 1.63 rs2439378 68.3 1.63 rs2439378 68.7 1.68 rs745103
16 84.7 1.51 rs149156 85.1 0.84 rs1177648 111.9 1.49 rs1387370 85.6 1.47 rs1541979 116.4 1.23 rs2052904 111.1 1.49 rs723919
17 136.9 0.48 rs599314 1.0 0.50 rs7813 132.4 0.82 rs1062935 120.8 0.68 rs454138 17.4 0.46 rs1443417 124.0 1.21 rs1552173
18 97.5 0.18 rs1539964 97.9 0.21 rs1539964 77.6 0.52 rs732982 97.8 0.36 rs1539964 97.8 0.51 rs1539964 77.5 0.48 rs732982
19 72.5 0.62 rs1603 14.3 0.58 rs352500 44.0 0.61 rs273265 66.5 0.39 rs268666 14.3 0.51 rs352500 42.9 0.54 rs4808095
20 114.6 0.46 rs379042 101.6 0.69 rs1570160 101.6 0.47 rs1570160 108.7 0.65 rs6587239 101.4 0.73 rs1570160 101.4 0.41 rs1570160
21 61.0 0.65 rs875060 61.4 0.99 rs875060 61.4 0.46 rs875060 50.8 0.62 rs2837121 50.8 0.75 rs2837121 41.0 0.15 rs1892687
22 63.1 1.55 rs2399153 74.5 1.93 rs6520165 71.4 1.00 rs739240 73.3 1.52 rs137930 74.5 1.43 rs6520165 71.4 0.97 rs739240
X 19.3 1.08 rs1656651 14.5 1.51 rs1852456 15.4 1.37 rs1869588 18.9 1.22 rs768567 14.2 1.67 rs1852456 15.4 1.79 rs1869588

Shown are multipoint linkage scores computed with MERLIN for EUR families, correcting for marker–marker linkage disequilibrium; and with ALLEGRO for ALL
families using SNPs with minimal LD (r2 > 0.05) and separate allele frequency estimates for EUR, AFR and OTH families. Bold scores exceed empirical suggestive
evidence for linkage (1.94 for Kong–Cox; 2.21 for dominant and recessive analyses taking the two tests into account). Chr, chromosome; cM, location of the peak score
(centimorgans); LOD, LOD score; hLOD, heterogeneity LOD; SNP, assayed single nucleotide polymorphism closest to each score; Kong—Cox, equivalent LOD for a Z-
likelihood ratio score computed with the Kong–Cox exponential model. For the four regions with suggestive evidence for linkage, the physical position of the largest
LOD and 1-LOD support interval in cM and Mb (megabases) were: 8p: 27.61 Mb, 37.1–49.8 cM, 21.37–29.36 Mb; 8q: 128.06 Mb, 130.1–141.6 cM, 126.84–132.63 Mb; 9q:
133.00 Mb, 143.0–151.7 cM, 131.96–134.55 Mb; 12q: 111.08 Mb, 117.3–133.6 cM, 104.07–115.64 Mb.
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genomewide evidence for linkage with heterogeneity
was observed on chromosome 10p12 (see Table 3
legend for additional details). Chromosome 8p21
again produced suggestive evidence for linkage both
with and without heterogeneity in this analysis.
Results of tests for intersite heterogeneity (that is,
the difference between LODs with and without
allowing for heterogeneity) are shown in online

Supplementary Table 1. Significant heterogeneity
was observed on chromosomes 10p (45.6 cM) and
22q11.1 (0 cM).

Supplementary Online Files provide details of
parametric and nonparametric linkage scores, genetic
location and information content for each analyzed
point for each analysis in the entire sample for EUR
and ALL families, as well as the full and No-LD

Figure 1 Genomewide linkage results. Shown for 707 European-ancestry families (top) and for all 807 families (bottom) are
linkage results across the genome. The x axis values are cumulative chromosomal locations in centimorgans (deCODE map),
with chromosome boundaries shown as vertical gridlines. The y axis values are Kong–Cox LOD scores for nonparametric
analyses, or heterogeneity LOD (hLOD) scores for parametric analyses. Black solid lines represent nonparametric LOD scores,
gray lines (red in the online html version) hLOD scores under a dominant model and dashed lines (purple online) hLOD
scores under a recessive model (see text for details of the models). Dotted lines show the empirical thresholds for
genomewide suggestive evidence for linkage (less than 1 peak of this magnitude expected by chance, in the absence of
linkage) for nonparametric and parametric analyses. The parametric threshold takes into account that two such tests
(dominant and recessive) were performed.
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marker maps. Online files for the companion meta-
analysis paper1 provide ranked results for each of our
eight samples separately and for EUR and ALL
families separately.

Other analyses

No significant chromosomewide effects were obser-
ved for sex of the affected pair or parent of origin
(online Supplementary Tables 3 and 4). Online
Supplementary Table 5 shows results of interaction
analyses for all pairs of 18 regions with Kong–Cox
LOD scores greater than 1. No genomewide significant
interactions were observed. The online table legend
includes a list of the most significant empirical
interaction P-values.

Discussion

Suggestive evidence for linkage was detected on
chromosome 8p21 in multiple analyses: in nonpara-
metric, dominant and recessive analyses of 707
European-ancestry families, and in nonparametric
and dominant analyses of all 807 families.

This same region produced suggestive evidence for
linkage (and the largest peak), in the independent
Molecular Genetics of Schizophrenia (MGS) sample35

of 409 European-ancestry and African-American
families. Our peak results were between 45.9 and
46.8 cM (between rs1561817 and rs9797, 26.59–
27.65 Mb; deCODE linkage map and genome build
36.3 physical locations). The MGS peak was at
43.3 cM for all families (near rs196886 at 24.79 Mb),
whereas in European-ancestry families it was at
15.3 cM (8p23, near rs7834209 at 6.9 Mb), with a
slightly smaller peak at 34.6 cM (8p21, near
rs34393111 at 20.28 Mb), and suggestive evidence
for linkage extended beyond our peak scores. Pulver
et al.36 were the first to report preliminary and then
strongly suggestive evidence10 for linkage of SCZ to
chromosome 8p markers in much of the JHU sample
that is included here. We previously reported support
for 8p linkage in a study of microsatellite markers in a
majority of the families in the present analysis,13

consistent with results in this enlarged sample.
The most widely studied 8p candidate gene is

NRG1 (neuregulin 1), found to be associated with SCZ
by Stefansson et al.37 in an LD mapping study of a

Table 3 Logistic regression analysis of linkage allowing for intersite heterogeneity

Chr Linkage (homogeneity) Linkage allowing for heterogeneity

Max LOD cM No. of GW peaks Max LOD cM No. of GW peaks

1 1.14 122.4 6.96 2.81 47.1 14.76
2 1.51 116.5 3.36 4.47 152.1 1.66
3 0.63 10.3 19.86 3.71 15.1 4.76
4 0.81 177.6 13.84 2.69 179.3 17.01
5 0.84 160.9 13.06 3.46 130.6 6.46
6 0.9 33 11.55 3.12 183.5 10.08
7 0.53 10 24.53 2.06 86.1 34.61
8 2.95 46.3 0.15 5.11 46.5 0.74
9 1.41 146.5 4.02 4.1 2.5 2.74

10 1.46 45.6 3.69 8.32 45.6 0.001
11 0.15 63.3 57.57 2.41 63.3 23.62
12 1.71 119.1 2.2 3.08 119.1 10.55
13 0.41 12.4 31.63 2.94 128.1 12.56
14 0.6 14.2 21.27 3.16 47.8 9.58
15 1.13 41.4 7.08 4.06 42.2 2.91
16 1.26 83.6 5.48 3.48 115.4 6.34
17 0.63 136.9 19.86 1.97 0.4 38.06
18 0.36 78.5 35.48 2.2 78.5 29.65
19 0.82 73 13.56 3.13 73 9.97
20 0.44 60.9 29.69 3.9 60.9 3.64
21 1.08 55 7.86 2.88 49.7 13.52
22 2.08 73.7 1.06 4.81 72.6 1.09

Shown are maximum LOD scores on each autosome, by logistic regression analysis of IBD allele sharing of affected relative
pairs, assuming either homogeneity across the 8 sites (no covariates) or allowing for heterogeneity (covariates for sites, 7 d.f.).
‘No. of GW peaks’ refers to the number of peaks (at least 30 cM apart) of this size observed genomewide (autosomes) in 20 000
simulated replicates of chromosome 22 followed by adjustment for autosomal genome length. Results allowing for
heterogeneity on chromosome 10p12 (bold italics; at 21.275 Mb, near rs 893882) would be expected by chance once per
thousand genome scans, indicating genomewide significance. Results on chromosome 8 would be expected by chance less
than once per genome scan (bold text suggestive evidence for linkage). Online Supplementary Table 2 lists IBD proportions
and LOD scores by site for the peaks on chromosomes 10p and 8p.
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suggestive linkage peak observed in Icelandic families
(there were two 8p peaks in that analysis, with the
second one closer to ours), with supportive evidence
in some data sets.38 There are several indications that
if there is linkage on chromosome 8p it is not entirely
explained by NRG1. Here, LOD scores within one unit
of the maximum (1-LOD interval) were observed
between 21.37 and 29.36 Mb, whereas NRG1 is
between 32.53 and 32.74 Mb. (The 1-LOD interval is
a reliable confidence interval in studies of Mendelian
disorders, but not for complex disorders.) In the
companion meta-analysis paper,1 the second ‘bin’ on
chromosome 8 (8.2, 28.1–56.2 cM, B15.7–33 Mb)
produced the strongest (suggestive) evidence for
linkage in 22 European-ancestry data sets, and was
ranked eighth in the analysis of all 32 data sets. NRG1
is at the centromeric edge of that bin (B55.7 cM), so
one would expect that if it explained the linkage, the
signal would extend equally in the centromeric and
telomeric directions, but support for linkage was not
observed in more centromeric bins (bin 8.3 in the
primary analysis, from 56.2 to 84.3 cM; bin 8.4 in the
‘20 cM’ analysis from 56.2 to 75 cM; or bin 8.3 in the
‘30 cM’ shifted analysis from 42.15 to 70.25 cM).1 We
hypothesize that there is weak linkage to SCZ on
chromosome 8p, due to one or more loci in which
there are multiple rare risk-associated SNPs and/or
structural variants and/or multiple associated com-
mon SNPs. There are other candidate genes on 8p (see
discussion in the meta-analysis paper1), but it is not
yet clear what accounts for the evidence for linkage in
this region.

Suggestive evidence for linkage was observed on
chromosome 9q in the dominant analysis of all
families. Support for this region in other analyses
was modest, but not substantially different than the
evidence for 8p. This region is not supported by
previous linkage findings or the meta-analysis.1

Genomewide significant evidence for linkage
allowing for intersite heterogeneity was observed
on chromosome 10p12 at 45.6 cM (21.28 Mb). We
previously reported modest evidence for heterogene-
ity in this region,14 and in that report we also
reviewed the evidence for 10p linkage reported
previously in the NIMH-SGI, VCU/Ireland and part
of the Bonn/Perth samples studied here. A significant
signal is now seen in the present expanded sample,
with a denser marker map, due to allele sharing in the
Paris/CNRS, NIMH-SGI and (to a lesser degree) the
VCU samples (online Supplementary Table 2). There
is no indication of a high-penetrance signal from a
small subset of families: the NIMH sample includes
small nuclear families from the general US popula-
tion; and although there are some large, extended
pedigrees in the Paris/CNRS sample from La Réunion
Island, most of the families with positive LOD scores
were small families from the general French popula-
tion, and no single family had a LOD score (Kong–
Cox, dominant or recessive) greater than 1.4. Because
we combined families from eight previously collected
data sets, we do not have a consistent set of clinical

ratings across samples to search for a possible clinical
basis for linkage heterogeneity. The 10p peak is not
supported by meta-analysis,1 and is far from the
chromosome 10q peaks observed between 100 and
110 cM in two independent studies.39,40

Significant heterogeneity (but not linkage with
heterogeneity) was seen on chromosome 22q at
15 Mb, adjacent to the typical region (17–21 Mb) of
the 22q11 deletion syndromes whose manifestations
include SCZ in approximately 20% of cases.41 This
deletion was detected in less than 0.5% of SCZ cases
in two recent large studies.42,43 No consistent associa-
tion signals have been observed to date between SCZ
and common SNPs in candidate genes within the
deletion region.

Two other regions, on chromosomes 8q24.1 and
12q24.1, produced suggestive evidence for linkage in
at least one analysis, both reportedly linked to mood
disorders rather than SCZ. On 8q, a combined
analysis of genotypes from 11 linkage scans (1067
families) produced a nonparametric LOD score of 3.40
at 134.5 Mb, just telomeric to our 1-LOD interval, in
an analysis of bipolar I and bipolar II cases, but the
signal was much smaller in an analysis of only bipolar
I.44 Given that by definition only bipolar I can include
psychosis (usually in around half of cases), one would
not predict that the same locus in this region would
account for linkage signals to bipolar disorder and
SCZ. On chromosome 12q, there have been reports of
linkage to major depressive45,46 and bipolar disorders
(see review by Barden et al.47) with peak locations
ranging from 97.4–126.5 Mb to 116–126 Mb in bipolar
studies, close to our peak at 111 Mb. Neither region
was supported by the SCZ linkage meta-analysis.1

In the linkage meta-analysis,1 genomewide signifi-
cant evidence for linkage was detected on chromo-
some 2q (132–162 cM, 121–152 Mb), with some
support for linkage across a broad region (118–176
and 206–235 cM). In the present study, we see a
jagged line across chromosome 2q (Figure 1), reflect-
ing diverse peaks in different samples, although
without statistically significant evidence for hetero-
geneity. Our largest peak was in the nonparametric
EUR analysis at 206.6 cM (210.87 Mb). Thus, in our
data and in the meta-analysis of 32 data sets, linkage
evidence on 2q is intriguing but poorly localized. It
was recently reported that an SNP in ZNF804A, at
185 Mb on 2q, produced genomewide significant
evidence for linkage when a large collaborative SCZ
association sample was combined with bipolar dis-
orders cases from the Wellcome Trust Case Control
Consortium project.48

What is the relevance of linkage studies as the field
moves on to GWAS and large-scale resequencing
methods? Meta-analysis provides some support for
quite modest linkage signals.1 Thus, no gene is likely
to have a large effect on overall population risk. In
this situation, GWAS methods have better power,2 but
(currently) only for common SNPs. GWAS technolo-
gies can also detect some but not all copy number
variants (CNVs). Recent studies suggest that rare
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deletions on chromosomes 1q and 15q (as well as
22q11) predispose to SCZ;42,43,49,50 and that SCZ cases
also have a small but significant excess of very rare
CNVs, some of which might therefore also be
pathogenic. These findings support the more general
hypothesis of multiple rare genomic events (SNPs,
CNVs, other structural changes) influencing risk for a
common disease.51–53

High-penetrance CNVs like those on 1q and 15q
have effects such as mental retardation and/or autism,
consistent with the observation that they reduce
fertility and thus are usually de novo mutations
rather than transmitted in families. But most SCZ
risk variants probably have smaller effects: the risk to
probands’ siblings is around 5%,20 and if one allows
for a small proportion of cases to be due to high-
penetrance CNVs, the remaining risk should be due to
lower-penetrance variants that would thus be trans-
mitted in families. It is possible that weak SCZ
linkage signals are in regions where there are multiple
rare as well as common risk variants, whose aggregate
frequency and effects are sufficient to produce a
linkage signal, and whose effects on fertility are not
too severe. We refer here to both deleterious trans-
mitted and/or recurring sequence and structural
polymorphisms with low population frequencies,
and to very rare and thus very deleterious variants
that segregate in different families, that is, extreme
allelic heterogeneity.

One approach to finding these variants would be
high-throughput resequencing studies of linkage
regions. For example, significant differences have
been found in the proportions of high- and low-risk
individuals carrying very rare nonsynonymous cod-
ing SNPs for some diseases.54–55 This approach has
not yet been attempted for SCZ in a large sample, thus
we lack information to predict the power or optimal
design of such studies. If a region in fact contained a
sufficient number of rare high-risk variants to pro-
duce a linkage signal, then it might be possible to
detect them by resequencing, although success would
depend on the proportion of subjects of families
carrying such variants, and by the extent of locus
heterogeneity, that is, if a small proportion of cases
carried rare risk variants at a large number of loci in a
linkage region, studies of a feasible sample size
might not detect them. It is not known whether it
will prove most productive to resequence exons,
entire genes with their nearby regulatory regions
or entire linkage regions (given that there are likely
to be relevant unannotated intergenic regulatory
sequences). Family-based samples might be particu-
larly useful for resequencing studies of linkage peaks,
if rare variants were contributing to the signal. But it
is also possible that these variants are rare precisely
because they reduce fertility, they could be more
easily found in case–control samples, which are also
larger. In our view, multiple strategies should be
attempted.

It has also been suggested that the power of GWAS
can be increased by upweighting evidence for

association based on linkage scores (resulting in a
small downweighting of other regions).56 Whether or
not this formal approach is used, it would be reason-
able to consider linkage findings when selecting
genes and regions for dense LD mapping and large-
scale resequencing studies.
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